- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input Levels
- Power Off Disables Outputs, Permitting Live Insertion
- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Active-Clamp Undershoot-Protection Circuit on the I/Os Clamps Undershoots Down to -2 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description

The SN74CBTK6800 device provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows bidirectional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.
The A and B ports have an active-clamp undershoot-protection circuit. When there is an undershoot, the active-clamp circuit is enabled and current from V_{CC} is supplied to clamp the output, preventing the pass transistor from turning on.

The SN74CBTK6800 is organized as one 10-bit switch with a single enable $(\overline{\mathrm{ON}})$ input. When $\overline{\mathrm{ON}}$ is low, the switch is on, and port A is connected to port B. When $\overline{O N}$ is high, the switch between port A and port B is open. When $\overline{\mathrm{ON}}$ is high or V_{CC} is 0 V , B port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	Tube	SN74CBTK6800DW	CBTK6800	
	SOIC - DW	Tape and reel		
		Tape and reel	SN74CBTK6800DBQR	CBTK6800
	TSSOP - PW	Tape and reel	SN74CBTK6800PWR	BK6800
	TVSOP - DGV	Tape and reel	SN74CBTK6800DGVR	BK6800

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

$\frac{\text { INPUT }}{\text { ON }}$	FUNCTION
L	A port = B port
H	A port = Z
B port = BIASV	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

logic diagram (positive logic)

† Undershoot clamp

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Bias voltage range, BIASV -0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Continuous channel current 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-50 \mathrm{~mA}$
Package thermal impedance, $\theta_{J A}$ (see Note 2): DBQ package $61^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $86^{\circ} \mathrm{C} / \mathrm{W}$
DW package $46^{\circ} \mathrm{C} / \mathrm{W}$
PW package $88^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

		MIN	MAX
V_{CC}	UnIT		
BIASV	Supply voltage	4	5.5
$\mathrm{~V}_{\mathrm{IH}}$	High-level control input voltage	1.3	$\mathrm{~V}_{\mathrm{CC}}$
V_{IL}	Low-level control input voltage	2	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	V	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2	V
$\mathrm{V}_{\text {IKU }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$0 \mathrm{~mA} \geq 11 \geq-50 \mathrm{~mA}$,	$\overline{\mathrm{OE}}=5.5 \mathrm{~V}$			-2	V
I		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 5	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{I} or $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	BIASV = Open			20	$\mu \mathrm{A}$
Io		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$,	BIASV $=2.4 \mathrm{~V}$	0.25			mA
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND,	$\mathrm{I}=0$			20	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{CC}^{\ddagger}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V,	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				3		pF
C_{0} (OFF)		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	Switch off			8.5		pF
$\mathrm{r}_{\mathrm{on}}{ }^{\text {§ }}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \\ & \hline \end{aligned}$	V I $=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		11	20	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		3	7	
		$\mathrm{I}=30 \mathrm{~mA}$			3	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \quad \mathrm{l}=15 \mathrm{~mA}$		6	15			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified TTL-voltage level rather than $V_{C C}$ or GND.
\S Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	$\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$	UNIT
				MIN MAX	MIN MAX	
$t_{p d}{ }^{\text {I }}$	A or B	B or A		0.35	0.25	ns
tPZH	ON	A or B	BIASV = GND	6	$2 \quad 5.1$	ns
tPZL			BIASV = 3 V	6	25.6	
tPHZ	$\overline{\mathrm{ON}}$	A or B	BIASV = GND	5.5	15	ns
tplZ			BIASV = 3 V	5.5	$2 \quad 5.9$	

[^0]
undershoot characteristics

PARAMETER	TEST CONDITIONS	MIN TYP \dagger MAX	UNIT
V OUTU	See Figures 1 and 2, and Table 1	$2 \mathrm{~V}_{\text {OH }}-0.3$	V

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 1. Device Test Setup

Figure 2. Transient Input Voltage Waveform

Table 1. Device Test Conditions

PARAMETER	VALUE	UNIT
B port under test \ddagger	See Figure 1	
$\mathrm{~V}_{\mathrm{IN}}$	See Figure 2	V
t_{w}	20	ns
t_{r}	2	ns
t_{f}	2	ns
$\mathrm{R} 1=\mathrm{R} 2$	100	$\mathrm{k} \Omega$
V_{TR}	11	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V
BIASV	Open	

\ddagger Other B-port outputs are open.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t P Z H$ are the same as ten.
G. $\quad \mathrm{tPLH}$ and $\mathrm{t} P \mathrm{HL}$ are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
74CBTK6800DBQRE4	ACTIVE	$\begin{aligned} & \text { SSOP/ } \\ & \text { QSOP } \end{aligned}$	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
74CBTK6800DBQRG4	ACTIVE	$\begin{aligned} & \hline \text { SSOP/ } \\ & \text { QSOP } \end{aligned}$	DBQ	24	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
74CBTK6800DGVRE4	ACTIVE	TVSOP	DGV	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74CBTK6800DGVRG4	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800DBQR	ACTIVE	$\begin{aligned} & \text { SSOP/ } \\ & \text { QSOP } \end{aligned}$	DBQ	24	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN74CBTK6800DGVR	ACTIVE	TVSOP	DGV	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800DWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800DWRE4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800DWRG4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PW	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PWE4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PWG4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PWR	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PWRE4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74CBTK6800PWRG4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^1]${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1 (m m)}$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74CBTK6800DBQR	SSOP/ QSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74CBTK6800DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CBTK6800DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74CBTK6800PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBTK6800DBQR	SSOP/QSOP	DBQ	24	2500	346.0	346.0	33.0
SN74CBTK6800DGVR	TVSOP	DGV	24	2000	346.0	346.0	29.0
SN74CBTK6800DWR	SOIC	DW	24	2000	346.0	346.0	41.0
SN74CBTK6800PWR	TSSOP	PW	24	2000	346.0	346.0	33.0

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

DBQ (R-PDSO-G24) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AE.

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	$\underline{\text { amplifier.ti.com }}$
Data Converters	$\underline{\text { dataconverter.ti.com }}$
DLP® Products	$\underline{\text { www.dlp.com }}$
DSP	$\underline{\text { www.ti.com }}$
Clocks and Timers	$\underline{\text { interface.ti.com }}$
Interface	$\underline{\text { logic.ti.com }}$
Logic	$\underline{\text { power.ti.com }}$
Power Mgmt	$\underline{\text { www.ti-rfid.com }}$
Microcontrollers	

RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications

Audio	$\underline{\text { www.ti.com/audio }}$
Automotive	
Communications and	
Telecom	
Computers and	
Peripherals	$\underline{\text { www.ti.com/automotive }}$
Consumer Electronics	$\underline{\text { www.ti.com/computers }}$
Energy	$\underline{\text { www.ti.com/consumer-apps }}$
Industrial	$\underline{\text { www.ti.com/energy }}$
Medical	$\underline{\text { www.ti.com/industrial }}$
Security	$\underline{\text { www.ti.com/security }}$
Defense	$\underline{\text { www.ti.com/space-avionics-defense }}$
Video and Imaging	$\underline{\text { www.ti.com/wireless-apps }}$
Wireless	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

[^0]: IThe propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

[^1]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb -Free/Green conversion plan has not been defined.
 Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
 Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

